Qual das seguintes reações na glicólise requerem ATP como substrato?

Ouça este artigo:

Para que a vida pudesse surgir e se desenvolver, foi necessária a criação de mecanismos de obtenção de energia. Em razão disso, surgiram formas para que isso pudesse ocorrer. A primeira estratégia desenvolvida era realizar esse processo sem o envolvimento do oxigênio, afinal, em tempos remotos da história evolutiva, ele não estava disponível no ar atmosférico. Nesse sentido, surgiu um processo denominado glicólise.

A palavra glicólise significa “quebra de açúcar”, o que dá uma ideia bastante sólida sobre o que ela se trata. Essa quebra é uma sequência de eventos que degradam a glicose, transformando-a em duas moléculas de piruvato ou ácido pirúvico e liberando energia. Ela é uma via de obtenção energética que ocorre na grande maior parte dos organismos vivos e se dá no citosol das células. Assim, pode-se dizer que a glicólise é representada, grosso modo, por:

Glicose → 2 Piruvato + Energia

Certo! Mas antes de saber o que, de fato, ocorre na glicólise, é necessário saber o que essa energia realmente é. Essa energia é o “combustível” utilizado nos processos e reações celulares do organismo. Esse combustível é derivado de uma molécula chamada adenosina trifosfato ou ATP. O ATP é uma molécula composta pela base nitrogenada adenina, açúcar e três fosfatos. A energia que tanto se fala é oriunda, justamente, das duas ligações que unem os fosfatos. Elas são ligações de alta energia que, quando necessário para alguma função ou reação do corpo, são quebradas liberando energia suficiente para esses eventos.

Em cima do que foi explicado no parágrafo anterior, pode-se dizer que a glicólise é um processo com baixa eficiência na obtenção de energia. Isso se faz verdadeiro porque ela acaba produzindo apenas duas moléculas de ATP para cada uma de glicose que passa pelas reações. Não obstante, ela se mostra de extrema importância. Isso ocorre porque, muito embora ocorra baixa produção energética, são produzidas duas moléculas de piruvato, substrato da fosforilação oxidativa. Ademais, a glicólise faz parte da respiração anaeróbica e da aeróbica, o que permite inferir que seu surgimento foi vital para o desenvolvimento da vida.

Outro detalhe que é interessante ser mencionado é o fato de a glicólise ocorrer em desde organismos simples e primitivos, como bactérias, até em formas de vida mais complexas que surgiram muito mais tarde em uma escala evolutiva, como os seres humanos. Isto é, o fato dela ter surgido e persistido até os dias atuais por diversos organismos mostra que, muito embora a glicólise seja considerada ineficiente, ela se trata de uma estratégia extremamente “bem-sucedida” e importante para a manutenção da vida.

Reações

Com relação à parte bioquímica, a glicólise é um conjunto de reações mediadas por diferentes enzimas, nas quais ocorrem gasto e geração de ATP. Mais especificamente, são dez diferentes reações que começam quando a glicose recebe dois fosfatos e sofre um rearranjo de sua estrutura. Essas reações geram gasto de dois ATPs e resultam na formação da frutose-1,6-fosfato. Essa molécula, então, é quebrada “ao meio” gerando diidroxiacetona-fosfato (DHAP) e gliceraldeído-3-fosfato (GP), que podem, facilmente, converter-se um no outro. Assim, como o açúcar foi dividido em dois, seus produtos serão duplicados.

O GP sofre duas reações onde ele perde um hidrogênio e gera um ATP, originando o ácido 3-fosfoglicérico. Após isso, ocorrem três outras reações que acarretam a reestruturação da molécula, perda de água e geração de outro ATP, dando origem, então, ao piruvato. Vale ressaltar que, como foi dito anteriormente, os produtos são duplicados. Dessa forma, ocorre a geração de quatro moléculas de ATPs.

Enfim, a glicólise se trata de um conjunto de reações que transformam a glicose em piruvato com a finalidade de gerar energia na forma de ATP. Sua eficiência é baixa por resultar em um saldo liquido de apenas dois ATPs, mas é responsável pela produção de substratos de outras reações muito mais energéticas. Além disso, é uma via de obtenção de energia utilizada pela maior parte dos seres vivos, se tratando de uma das primeiras estratégias bem sucedidas da história evolutiva que visavam suprir as necessidades energéticas dos organismos.

Bibliografia:
Junqueira, L. C. & Carneiro, J. Biologia Celular e Molecular. 9ª Edição. Editora Guanabara Koogan. 338 páginas. 2012.
Tortora, G.J; Funke, B.R. & Case, C.L. Microbiologia. 10ª Edição. Editora Artmed. 964 páginas. 2012.
Guyton, A.C. & Hall, J.E. Tratado de Fisiologia Médica. 11ª Edição. Editora Elsevier. 1115 páginas. 2006

Texto originalmente publicado em https://www.infoescola.com/bioquimica/glicolise/

A glicólise é um processo que degrada a glicose em duas moléculas menores, sendo essencial para a produção de energia dos organismos. Ela é dividida em duas fases, uma de investimento energético e a outra de compensação energética. Ao final das duas etapas, o saldo é de duas moléculas de ATP e duas moléculas de NADH. Tudo isso é realizado no citosol das células.

Leia mais: Quimiossíntese – produção de energia por meio de compostos inorgânicos

Qual das seguintes reações na glicólise requerem ATP como substrato?
A glicose é degradada no processo de glicólise para a obtenção de energia.

A glicólise é o processo de oxidação da glicose (carboidrato), principal fonte energética dos seres vivos, que utilizam essa molécula para o funcionamento adequado do metabolismo.

Esse processo divide uma molécula de glicose, que é constituída por seis átomos de carbono, em duas moléculas de piruvato, com três carbonos cada. Isso ocorre em duas etapas, no citosol dos organismos procarióticos e eucarióticos: a primeira etapa ocorre com gasto de energia e é denominada de investimento energético; já a segunda, denominada de compensação energética, repõe o que foi consumido e ainda produz mais duas moléculas de ATP.

A importância da glicólise

A glicose é produzida pelos organismos autótrofos e transferida aos heterótrofos por meio das cadeias alimentares. No entanto, para que essa energia seja aproveitada pelos organismos, essa molécula precisa ser degradada por meio da glicólise, que é a via metabólica comum a todos os seres vivos, em que ocorre a decomposição parcial dessas moléculas na presença ou ausência de oxigênio. Ao passo que a molécula de glicose é degradada, a energia liberada é armazenada nas ligações fosfoanídricas de ATP.

Nos organismos que fazem respiração celular, após a glicólise, ocorrem novas etapas até a degradação total da glicose e há um maior aproveitamento energético, com a produção de 32 moléculas de ATP.

Nos organismos que realizam processos anaeróbicos, como a fermentação, a glicólise é  o único processo de degradação da glicose, tendo um aproveitamento energético menor, de apenas dois ATP. Além da produção de ATP, a glicólise é também responsável pela produção de precursores de compostos como ácidos graxos no fígado.

Leia também:  Diferenças entre as células animais e vegetais

Não pare agora... Tem mais depois da publicidade ;)

Etapas da glicólise

A glicólise é um processo que ocorre por meio de uma série de 10 reações divididas em duas etapas, que serão descritas a seguir:

→ 1ª etapa

Essa etapa, conhecida também por fase preparatória ou fase de investimento, consiste em cinco reações:

1. Ocorre a fosforilação da molécula de glicose, em que ela recebe fosfato proveniente da molécula de ATP, formando glicose 6-fosfato;

2. A molécula glicose 6-fosfato sofre um rearranjo e forma frutose 6-fosfato;

3. Outra molécula de ATP fornece fosfato à molécula de frutose 6-fosfato, dando origem à frutose 1, 6 -difosfato;

4. A molécula de frutose 1, 6- difosfato sofre um rearranjo, com a abertura de seu anel benzeno, originando duas moléculas com três carbonos cada uma: gliceraldeído 3-fosfato e di-hidroaxetona fosfato;

5. A molécula de di-hidroaxetona sofre um rearranjo dando origem a outra molécula de  gliceraldeído 3-fosfato.

Pode-se observar que ao final dessa primeira fase, houve apenas gasto de energia, com  a conversão de duas moléculas de ATP em ADP.

→ 2ª etapa

Essa etapa, também conhecida como fase de lucro ou compensação energética, ocorre o ganho energético e também é constituída por cinco etapas, descritas a seguir:

6. Duas moléculas de NAD+ (dinucleotídio nicotinamida e adenina) são reduzidas em duas moléculas de NADH com os elétrons provenientes da oxidação de  gliceraldeído 3-fosfato em 1,3 -difosfoglicerato;

7. Cada molécula de 1,3 – difosfoglicerato cede um fosfato a uma molécula de ADP originando, assim, duas molécula de ATP e duas molécula de 3 – fosfoglicerato;

8. Ocorre um rearranjo das moléculas de 3 – fosfoglicerato, formando 2 – fosfoglicerato;

9. As moléculas de 2 – fosfoglicerato perdem uma molécula de H2O, originando o fosfoenolpiruvato;

10. As moléculas de fosfoenolpiruvato fornecem um fosfato a uma molécula de ADP, originando duas moléculas de ATP e duas de piruvato.

O saldo energético da segunda fase da glicólise são duas moléculas de NADH e quatro moléculas de ATP.  Assim, o saldo final da glicólise, será de duas moléculas de piruvato, duas moléculas de NADH e duas moléculas de ATP, produzidas a partir de uma molécula de glicose.

Fermentação e respiração celular

Após as etapas da glicólise, dependendo da presença ou ausência de oxigênio, o processo de produção de energia segue mediante realização de processos, como a fermentação e a respiração celular.

Na fermentação, um processo anaeróbio (ocorre sem a presença de oxigênio), o piruvato permanece no citosol, recebe os elétrons do NADH, reciclando o NAD+, que pode ser utilizado novamente na glicólise, e dando origem a um novo produto, dependendo do tipo de organismo que realiza esse processo (lactato ou etanol e dióxido de carbono).

O saldo energético final da fermentação é de 2 ATP. Já na respiração celular, um processo aeróbio (ocorre na presença de oxigênio), o piruvato entra nas mitocôndrias dando sequência a uma série de reações e apresentará um saldo energético final de 32 moléculas de ATP.

Saiba mais: Organismos aeróbios e anaeróbios: conheça as diferenças entre eles

Equação da glicólise

Qual das seguintes reações na glicólise requerem ATP como substrato?
O processo de respiração celular dá continuidade à degradação da glicose no interior da mitocôndria.

O processo de glicólise pode ser resumido na equação apresentada a seguir:

Glicose + 2 NAD+ +2ADP + 2Pi → 2 Piruvato + 2NADH + 2H+ +2ATP +2 H2O

Por Helivania Sardinha dos Santos

Quais reações da glicólise requerem ATP para ocorrer?

Oxidação do gliceraldeido 3-fosfato em 1,3-bifosfoglicerato Essa é a primeira das duas reações conservadoras da energia da glicólise e que no final levam à formação do ATP.

Em quais reações ocorre a síntese de ATP a nível de substrato?

Além dessas substâncias reduzidas, uma molécula de ATP é sintetizada ao nível de substrato na reação catalisada pela enzima succinil Co-A sintetase. Como ao final da glicólise são produzidas duas moléculas de piruvato, para a completa oxidação da glicose o Ciclo de Krebs precisa dar duas voltas.

Como a glicólise gera ATP se a via consome ATP?

Para que o processo ocorra, é necessário que a molécula de glicose seja inicialmente ativada pela adição de fosfatos, os quais são provenientes de duas moléculas de ATP. Apesar do uso de ATP, o processo de glicólise é vantajoso, uma vez que é produzido um total de quatro moléculas de ATP ao final das reações.

Quantos ATP são investidos na glicólise quando o substrato inicial para a reação e a glicose?

Durante a glicólise aeróbica, duas moléculas de ATP são inicialmente usadas para tornar a molécula de glicose suficientemente reativa. A molécula de glicose é fosforilada, o que significa que as moléculas de fosfato são adicionadas à molécula de glicose a partir das moléculas de ATP.