Quais foram os problemas encontrados no modelo atômico de Rutherford?

Em 1911, o físico neozelandês Ernest Rutherford realizou um experimento em que ele bombardeou uma finíssima lâmina de ouro com partículas alfa (α) emitidas por uma amostra de polônio (material radioativo), que ficava dentro de um bloco de chumbo com um pequeno orifício pelo qual as partículas passavam.

O ouro foi escolhido por ser um material inerte, pouco reativo. Até o momento, acreditava-se que o átomo seria uma esfera carregada positivamente, com elétrons (partículas negativas) distribuídos uniformemente por todo o seu volume, conforme indicava o modelo de Thomson.

Quais foram os problemas encontrados no modelo atômico de Rutherford?

Se o átomo fosse realmente assim, as partículas alfa, que são compostas por partículas positivas, atravessariam os átomos da lâmina de ouro e, no máximo, algumas sofreriam pequenos desvios em suas trajetórias ao se aproximarem dos elétrons.

Quais foram os problemas encontrados no modelo atômico de Rutherford?

Mas não foi isso que Rutherford observou. A grande maioria das partículas atravessava a lâmina de ouro, uma quantidade pequena não atravessa a folha, mas voltava, e algumas partículas alfa sofriam desvios de suas trajetórias.

Quais foram os problemas encontrados no modelo atômico de Rutherford?

Isso comprovou que o modelo de Thomson estava incorreto. A partir das informações coletadas, Rutherford propôs o seu modelo atômico, que foi o seguinte:

  • Visto que a maioria das partículas alfa atravessou os átomos da lâmina de ouro, isso significa que os átomos possuem uma grande parte vazia. Nesse espaço vazio ficam os elétrons e, por isso, esse espaço foi chamado de eletrosfera.
  • Poucas partículas alfa refletiam e desviavam porque o átomo possui um núcleo bem pequeno e condensado, onde está toda a massa do átomo, não permitindo que as partículas atravessem. Esse núcleo seria positivo, pois as partículas alfa também são positivas, então, quando elas estivessem passando perto do núcleo, elas sofreriam um desvio em sua trajetória, pois cargas de mesmo sinal se repelem. Mas, se batessem de frente com o núcleo, elas seriam ricocheteadas, rebatidas na direção contrária ao choque.
  • Comparando o número de partículas que atravessou a lâmina com as que foram rebatidas, conclui-se que o núcleo é de 10 000 a 100 000 vezes menor que seu tamanho total.

Resumidamente, o modelo de Rutherford era parecido com o sistema solar, em que o núcleo positivo (feito de prótons) seria o sol e os planetas que giram ao seu redor seriam os elétrons na eletrosfera:

Não pare agora... Tem mais depois da publicidade ;)

Quais foram os problemas encontrados no modelo atômico de Rutherford?

Em 1932, Chadwick descobriu a terceira partícula subatômica, o nêutron, e o modelo de Rutherford sofreu uma pequena alteração, em que o núcleo não era composto apenas de prótons, mas de nêutrons também. Ele continuava positivo porque os nêutrons não possuem carga alguma, apenas impediam que a repulsão entre os prótons deixasse o átomo instável.

Assim, o átomo de Rutherford ficou como o mostrado na imagem a seguir. Lembrando que o núcleo não está na proporção correta com o diâmetro do átomo.

Quais foram os problemas encontrados no modelo atômico de Rutherford?

Esse modelo é muito útil até hoje para explicar vários fenômenos físicos e químicos. No entanto, ele apresentava uma série de contradições consideráveis, como o fato de que cargas opostas se atraem e, dessa forma, se os elétrons (negativos) girassem ao redor do núcleo (positivo), eles perderiam energia gradualmente e adquiririam uma trajetória em forma de espiral até atingir o núcleo.

Assim, o modelo atômico continuou evoluindo, como mostra o texto abaixo:

·         Modelo Atômico de Rutherford-Bohr

* Créditos da imagem: rook76 / Shutterstock.com

O texto Átomo de Rutherford mostrou que, segundo os estudos desse cientista, um modelo atômico que explicaria as propriedades da matéria seria que o átomo é composto de um pequeno núcleo positivo (constituído por prótons e nêutrons) onde está inserida a massa praticamente total do átomo, envolta de uma região denominada eletrosfera onde os elétrons ficam girando.

No entanto, o modelo atômico de Rutherford possuía alguns erros. Por exemplo, o elétron possui carga negativa, portanto, se ele girasse ao redor do núcleo, que é positivo, ele iria perder energia na forma de radiação, com isso, suas órbitas iriam diminuir gradativamente e os elétrons iriam adquirir um movimento espiralado, acabando por se chocar com o núcleo.

Quais foram os problemas encontrados no modelo atômico de Rutherford?

Mas isso não ocorre na prática. Por isso, em 1913, o cientista Niels Bohr (1885-1962) propôs um modelo que se baseou no modelo de Rutherford, apenas aprimorando-o, por isso ele passou a ser chamado de modelo atômico de Rutherford-Bohr.

Bohr se baseou também na teoria quântica da energia de Max Planck e nos espectros de linhas dos elementos para criar os seguintes princípios fundamentais:

  1. Os elétrons não se movem aleatoriamente ao redor do núcleo, mas sim em órbitas circulares, sendo que cada órbita apresenta uma energia bem definida e constante (nível de energia) para cada elétron de um átomo. Quanto mais próximo do núcleo, menor a energia do elétron, e vice-versa;
  2. Os níveis de energia são quantizados, ou seja, só são permitidas certas quantidades de energia para o elétron cujos valores são múltiplos inteiros do fóton (quantum de energia);
  3. Para passar de um nível de menor energia para um de maior energia, o elétron precisa absorver uma quantidade apropriada de energia. Quando isso ocorre, dizemos que o elétron realizou um salto quântico e atingiu um estado excitado. Esse estado é instável e quando o elétron volta para o seu nível de energia original (estado fundamental), ele libera a energia que havia absorvido na forma de onda eletromagnética.

Esse último postulado explica porque os fogos de artifício emitem cores diferentes. Cada sal presente nos fogos de artifício possui um cátion de elementos químicos diferentes. Quando são aquecidos, os elétrons desses elementos saltam de nível de energia, mas quando voltam para o nível original, eles emitem a energia que foi absorvida na forma visível. Cada cor corresponde a uma quantidade de energia característica. Por exemplo, se usarmos um sal de cobre veremos a cor azul, já se usarmos um sal de bário, a cor emitida será a verde e assim por diante. Outras cores podem ser vistas no texto Química dos Fogos de Artifício.

Não pare agora... Tem mais depois da publicidade ;)

Os níveis de energia para os átomos dos elementos conhecidos são no máximo 7 e são representados pelas letras K, L, M, N, O, P, e Q.

Quais foram os problemas encontrados no modelo atômico de Rutherford?

* Crédito da imagem: Antonio Abrignani e Shutterstock.com.

Quais os problemas do modelo de Rutherford?

Problemáticas do modelo de Rutherford Muitos físicos apontaram alguns problemas no modelo proposto por Rutherford: 1º problema: como seria possível um núcleo carregado positivamente, se partículas de carga positiva repelem-se? 2º problema: por que os elétrons nas eletrosferas não são atraídos pelos prótons no núcleo?

O quê Rutherford não conseguiu explicar?

Embora tenha explicado questões importantes da composição do átomo, o modelo de Rutherford não conseguia explicar porque o elétron não perde energia e “colide” com o núcleo ao se movimentar em órbita do mesmo, uma vez que na Física a atração de cargas elétricas de sinais opostos já era conhecida.

Quais foram os resultados observados no experimento de Rutherford?

A conclusão que ele chegou era átomo possui um grande vazio e seria formada por outras partículas: os prótons e elétrons. O átomo seria constituídos por um núcleo carregado positivamente e uma nuvem eletrônica carregada negativamente.

Como Bohr resolveu os problemas com o átomo de Rutherford?

Assim, em 1913, ele propôs alguns postulados que alteraram a visão do modelo atômico de Rutherford. Basicamente ele mostrou que os elétrons movem-se ao redor do núcleo atômico em órbitas circulares que possuem uma energia bem definida e característica, sendo, portanto, um nível de energia ou camada eletrônica.