Em qual ou quais situações o rapaz está executando um trabalho Justifique sua resposta?

Estes exercícios sobre elevadores abordam as marcações de peso aparente na subida e descida em movimento acelerado. Publicado por: Joab Silas da Silva Júnior

questão 1

Em um elevador há um homem de massa igual a 95 kg sobre uma balança graduada em newton. Em um instante, o elevador começa a subir com aceleração de 0,5 m/s2. Determine a diferença percentual aproximada entre a marcação do peso do homem no elevador em repouso e em movimento.

Dado: g = 10 m/s2

a) 7,8 %

b) 5,8 %

c) 4,8 %

d) 2,8 %

e) 9,8 %

questão 2

Determine o peso aparente de uma pessoa de massa igual a 50 kg que está em um elevador que desce com aceleração igual a 1 m/s2.

Dado: g = 10 m/s2

a) 460 kg

b) 458 kg

c) 455 kg

d) 445 kg

e) 450 kg

questão 3

(Unifor-CE) Um corpo de massa 2,0 kg está pendurado em um dinamômetro preso ao teto de um elevador. Uma pessoa no interior deste elevador observa que a indicação fornecida pelo dinamômetro é 26N. Considerando a aceleração local da gravidade de 10 m/s2, o elevador pode estar:

a) em repouso.

b) descendo com aceleração de 2,0 m/s2

c) descendo em movimento uniforme

d) subindo com velocidade constante

e) subindo com aceleração de 3,0 m/s2

questão 4

(ITA) Uma pilha de seis blocos iguais, de mesma massa m, repousa sobre o piso de um elevador, como mostra a figura. O elevador está subindo em movimento uniformemente retardado com uma aceleração de módulo a. O módulo da força que o bloco 3 exerce sobre o bloco 2 é dado por

Em qual ou quais situações o rapaz está executando um trabalho Justifique sua resposta?

a) 3m (g + a)

b) 3m (g – a)

c) 2m (g + a)

d) 2m (g – a)

e) m (2g – a)

respostas

Questão 1

LETRA “C”

No momento em que o elevador está parado, a marcação da balança, que representa a força normal, é igual à força peso, logo:

P = N

m. g = N

N = 95. 10 = 950 N

No momento em que o elevador inicia a subida, a força resultante será dada pela diferença entre a força normal e o peso, logo:

FR = m.a

N – P = m.a

N = m.a + mg

N = m.(a + g)

N = 95.(0,5 + 10)

N = 997,5 N

A diferença percentual entre as marcações é: Dp = (997,5 – 950) x 100 = 4,76%                                                                                     997,5

Voltar a questão

Questão 2

LETRA “E”

Na descida do elevador, a força resultante é dada pela diferença entre a força peso e a força normal:

FR = m.a

P – N = m.a

N = m.g – m.a

N = m (g – a)

N = 50 (10 – 1)

N = 450 N

A marcação indicada por uma balança corresponde à força normal. Nesse caso, a indicação é menor que o peso real da pessoa, que é de 500N.

Voltar a questão

Questão 3

LETRA “E”

O peso aparente de um corpo que está dentro de um elevador em movimento acelerado será maior que o peso real somente se o elevador estiver subindo. Nesse caso, a força resultante do sistema será a diferença entre a força normal e a força peso.

FR = m.a

N – P = m.a

N = m.a + m.g

N = m. (a + g)

26 = 2 (a + 10)

(a + 10) = 13

a = 3,0 m/s2

Voltar a questão

Questão 4

LETRA “B”

A força exercida pelo bloco 3 sobre o bloco 2 é a força normal referente ao peso dos blocos 1 e 2. Nesse caso, a força resultante é dada pela diferença do peso pela força normal, portanto:

FR = 2m.a

P – N = 2m.a

N = 2m.g – 2m.a

N = 2m (g – a)

Voltar a questão

Em qual ou quais situações o rapaz está executando um trabalho Justifique sua resposta?

Leia o artigo relacionado a este exercício e esclareça suas dúvidas

A força centrífuga é uma força imaginária que atua em um corpo no sentido oposto à força centrípeta. Considerando-a uma força real, seu conceito é utilizado quando o objetivo é separar alguma mistura rotacionando-a.

Enquanto a força centrípeta possui o sentido para o centro do movimento circular, a força centrífuga tem sentido para fora do círculo descrito no movimento, porém a verdade é que isso ocorre pela ação da primeira lei de Newton. Como, em teoria, as forças centrífuga e centrípeta são iguais, mas com sentidos opostos, são também calculadas da mesma forma.

Leia também: Força normal — a força que uma superfície exerce sobre um objeto

Tópicos deste artigo

  • 1 - Resumo sobre força centrífuga
  • 2 - O que é força centrífuga?
  • 3 - Exemplos de força centrífuga
  • 4 - Como calcular a força centrífuga?
  • 5 - Diferenças entre força centrífuga e força centrípeta
  • 6 - Exercícios resolvidos sobre força centrífuga

Resumo sobre força centrífuga

  • A força centrífuga é fictícia e seu resultado é desvincular um corpo do movimento circular que ele está executando.

  • São um exemplo dela as centrífugas utilizadas em exames laboratoriais.

  • A força centrífuga pode ser calculada pela seguinte fórmula:

\(F_{centrífuga}=\frac{m\cdot v²}R \)

  • Em termos da velocidade angular ω, a fórmula é a seguinte:

\(F_{centrífuga}=m\cdotω^2\cdot R\)

  • A força centrípeta difere da força centrífuga no sentido, sendo que a centrípeta exerce sentido para o centro do círculo que o movimento executa e a centrífuga tem seu sentido na direção oposta.

Não pare agora... Tem mais depois da publicidade ;)

O que é força centrífuga?

A centrífuga é uma força imaginária que tem a capacidade de distanciar um corpo que está descrevendo uma trajetória circular do centro do círculo descrito por ele, logo, a centrífuga implica “fuga do centro”. Por se tratar de uma força, sua unidade de medida é o newton N.

A força centrífuga é “fictícia” por três motivos, que inclusive fazem com que ela seja considerada também uma força inercial, que são os seguintes:

  • Primeiro motivo: ela só ocorre quando o movimento circular está ocorrendo, ou seja, se o corpo estiver em repouso, ela não age, e, como a velocidade do corpo está variando constantemente, o corpo não entra em equilíbrio.

  • Segundo motivo: caso houvesse uma força com o sentido oposto ao centro da circunferência e outra no sentido do centro (centrípeta), ambas se anulariam e o movimento deixaria de ser circular, tornando-se retilíneo.

  • Terceiro motivo: o corpo não é expulso da trajetória circular, o que ocorre na realidade é a primeira lei de Newton (princípio da inércia). Por exemplo, quando dois corpos se movem simultaneamente no movimento circular, a velocidade que atua é a linear, a rotação é devido à aceleração centrípeta, sendo assim, se um corpo se desvincular do movimento, ele manterá o sentido dessa velocidade, logo, uma linha reta. Isso é visível quando se está dentro de um veículo em movimento e ele faz uma curva, fazendo com que os passageiros e motorista tenham a impressão de se inclinar para o lado oposto da curva, quando na verdade seus corpos tendem a continuar em linha reta.

Exemplos de força centrífuga

Em qual ou quais situações o rapaz está executando um trabalho Justifique sua resposta?
Funda composta por cordas e um suporte de couro para as pedras.

A força centrífuga, embora fictícia, tem seu conceito amplamente utilizado. Veja, a seguir, alguns exemplos:

  • Aparelho laboratorial centrífuga: na medicina, geralmente é utilizado para separação dos componentes do sangue. Ele separa de misturas por meio do movimento circular com altas velocidades.

  • Função de centrifugação das máquinas de lavar roupa: nessa função a roupa descreve o movimento circular executado pelo cesto da máquina, que contêm vários furos e no qual a roupa é separada da água.

  • Arma de arremesso funda: consiste em girar uma pedra em um pedaço de corda, para fazer com que ela adquira velocidade e, com isso, atinja o alvo com mais força. Tal arma ficou famosa devido à história bíblica cristã de Davi e Golias, no entanto, ela é ainda amplamente utilizada, por exemplo, por algumas tribos indígenas.

Como calcular a força centrífuga?

A força centrífuga é calculada pela mesma fórmula da força centrípeta, que equivale ao produto da massa m (medida em quilogramas kg) do corpo que executa o movimento circular pela razão entre a velocidade linear v (medida em metros por segundos m/s) elevada ao quadrado e o raio R (medido em metros) da circunferência formada.

\(F_{centrífuga}=\frac{m\cdot v²}R \)

Em termos da velocidade angular (ω), a equação anterior pode ser reescrita da forma a seguir.

\(F_{centrífuga}=m\cdotω^2\cdot R\)

Exemplo:

Uma criança está rodando um brinquedo de 3 kg que está preso na extremidade de uma corda de 0,6 m de comprimento segurando a outra extremidade da corda. Quando ela solta o brinquedo, ele atinge uma velocidade de 8 m/s. Qual seria o valor da força centrífuga nesse sistema?

Resolução:

Extraindo os dados do problema:

R = 0,6 m

m = 3 kg

v = 8 m/s

Fcentrífuga = ?

\(F_{centrífuga}=m\cdot \frac{v^2}R=3\cdot\frac{8^2}{0,6}=3\cdot\frac{64}{0,6}=\frac{192}{0,6}\)

\(F_{centrífuga}=320\ N\)

Diferenças entre força centrífuga e força centrípeta

A força centrífuga é uma força fictícia cujo sentido é oposto ao centro da circunferência formada pelo movimento. Por sua vez, a força centrípeta é uma força real e seu sentido é para o centro da circunferência.

Ao contrário do que é pensado, ambas não atuam no mesmo corpo, porque, caso o fizessem, seriam anuladas e o corpo descreveria um trajeto retilíneo. Essas duas forças não são um par de ação e reação, conforme muitas vezes se acredita, e isso está errado devido justamente ao fato de não atuarem sobre um mesmo corpo.

Saiba mais: Aplicações da força centrípeta em lombadas e depressões

Exercícios resolvidos sobre força centrífuga

Questão 1

Teodoro confeccionou uma funda que, dobrada com a corda, media 40 centímetros. A pedra tinha 0,2 kg, e, após rotacionar a funda, segurando na sua extremidade, Teodoro lançou a pedra com uma força de 72 N. Marque a alternativa que representa a velocidade com a qual a pedra foi lançada.

A) 9 m/s

B) 12 m/s

C) 20 m/s

D) 5 m/s

E) 10 m/s

Resolução:

Alternativa B

Extraindo os dados do problema:

Fcentrífuga = 72 N

R = 40 cm

m = 0,2 kg

v = ?

Incialmente é necessário converter o raio de centímetros para metros, dividindo o valor por 100.

\(R=\frac{40\ cm}{100}=0,4 m\)

\(F_{centrífuga}=\frac{m\cdot v²}R \)

\(72=0,2\cdot \frac{v^2}{0,4}\)

O 0,4 passará multiplicando o 72.

\(72\cdot0,4=0,2\cdot v^2\)

Invertendo ambos os lados da equação:

\(0,2\cdot v^2=72\cdot0,4\)

\(v^2=\frac{28,8}{0,2}=144\)

\(v^2=144\)

Como a variável está elevada ao quadrado, acrescenta-se raiz quadrada em ambos os lados da equação para eliminar o expoente.

\(\sqrt{v^2}=\sqrt{144}\)

\(v=12\ m/s\)

Questão 2

Para um teste de qualidade de um novo elástico, em um laboratório de física foi utilizado 0,9 m do elástico em questão. Em uma de suas extremidades, foi fixado um objeto de 2 kg, e a outra extremidade foi presa a uma máquina que rotacionou o elástico e parou de imediato quando o giro atingiu a velocidade angular igual a 6 rad/s, e, com isso, o elástico sofreu uma deformação de 0,4 m. O valor da constante elástica que constará nas especificações do elástico será:

A) 520 N/m

B) 811 N/m

C) 633 N/m

D) 162 N/m

E) 20 N/m

Resolução:

Alternativa D

Extraindo os dados do problema:

R = 0,9 m

m = 2 kg

ω = 6 rad/s

x = 0,4 m

K = ?

Para o que foi descrito no problema ser possível, a força elástica deverá ser igual à força centrífuga em termos de velocidade angular.

\(F_{elática}=F_{centrífuga}\)

Força elástica é igual ao produto entre deformação do elástico e a constante elástica K.

\(F_{elática}=K\cdot x\)

\(F_{elática}=F_{centrífuga}\)

\(K\cdot x=m\cdot ω^2\cdot R\)

\(K\cdot04=2\cdot6^2\cdot0,9\)

\(K\cdot04=2\cdot36\cdot0,9\)

\(K\cdot04=64,8\)

\(K=\frac{64,8}{0,4}=162\ N/m\)

Por Gustavo Campos
Professor de Física